Existence of positive solutions for Brezis-Nirenberg type problems involving an inverse operator

نویسندگان

چکیده

This article concerns the existence of positive solutions for thesecond order equation involving a nonlocal term $$ -\Delta u=\gamma (-\Delta)^{-1} u+|u|^{p-1}u, under Dirichlet boundary conditions. We prove depending on real parameter \(\gamma>0\), and up to critical value exponent \(p\), i.e. when \(1<p\leq 2^*-1\), where \(2^*=\frac{2N}{N-2}\) is Sobolev exponent. For \(p=2^*-1\), this leads us Brezis-Nirenberg type problem, cf. \cite{BN}, but, in our particular case, linear term. The effect that has changes dimensions which classical technique based minimizers constant, ensures solution, going from \(N\geq 4\) \(N\geq7\) problem. more information see https://ejde.math.txstate.edu/Volumes/2021/52/abstr.html

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of three positive solutions for nonsmooth functional involving the p-biharmonic operator

This paper is concerned with the study of the existence of positive solutions for a Navier boundaryvalue problem involving the p-biharmonic operator; the right hand side of problem is a nonsmoothfunctional with variable parameters. The existence of at least three positive solutions is establishedby using nonsmooth version of a three critical points theorem for discontinuous functions. Our resul...

متن کامل

A Note on Borderline Brezis-nirenberg Type Problems

where LAu = div(A(x)∇u) and La,pu = div(a(x)|∇u| ∇u) are, respectively, linear and quasilinear uniformly elliptic operators in divergence form in a non-smooth bounded open subset Ω of R, 1 < p < n, p∗ = np/(n − p) is the critical Sobolev exponent and λ is a real parameter. Both problems have been quite studied when the ellipticity of LA and La,p concentrate in the interior of Ω. We here focus o...

متن کامل

existence of three positive solutions for nonsmooth functional involving the p-biharmonic operator

this paper is concerned with the study of the existence of positive solutions for a navier boundaryvalue problem involving the p-biharmonic operator; the right hand side of problem is a nonsmoothfunctional with variable parameters. the existence of at least three positive solutions is establishedby using nonsmooth version of a three critical points theorem for discontinuous functions. our resul...

متن کامل

The Brezis-nirenberg Type Problem Involving the Square Root of the Laplacian

We establish existence and non-existence results to the BrezisNirenberg type problem involving the square root of the Laplacian in a bounded domain with zero Dirichlet boundary condition.

متن کامل

The Brezis-nirenberg Problem for Nonlocal Systems

By means of variational methods we investigate existence, non-existence as well as regularity of weak solutions for a system of nonlocal equations involving the fractional laplacian operator and with nonlinearity reaching the critical growth and interacting, in a suitable sense, with the spectrum of the operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Differential Equations

سال: 2021

ISSN: ['1072-6691']

DOI: https://doi.org/10.58997/ejde.2021.52